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Phase clustering  can bias  estimates  of  phase…amplitude  cross-frequency  coupling  (PAC).
We  propose  a modi“ed  version  of  PAC that  effectively  removes  the  bias  (dPAC).
Performance  of  dPAC is demonstrated  via  various  simulations  that  manipulate  the  bias.
dPAC is compared  with  other  CFC measures  and  applied  on  monkey  and  rat  recordings.
Results  of  both  simulated  and  real  data  show  that  dPAC outperforms  PAC.

 r  t  i  c l  e i  n  f  o

rticle  history:
eceived  5 March  2015
eceived  in  revised  form  18  June 2015
ccepted  15  July 2015
vailable  online  29  July 2015

eywords:
ross-frequency  coupling
hase…amplitude  coupling
hase clustering
odulation  index
eural  oscillations
lectrophysiology

a b s t  r  a c t

Background:  Cross-frequency  coupling  methods  allow  for  the  identi“cation  of  non-linear  interactions
across frequency  bands,  which  are thought  to  re”ect  a fundamental  principle  of  how  electrophysiological
brain  activity  is  temporally  orchestrated.  In  this  paper  we  uncover  a heretofore  unknown  source  of  bias  in
a commonly  used  method  that  quanti“es  cross-frequency  coupling  (phase…amplitude-coupling,  or  PAC).
New method:  We  demonstrate  that  non-uniform  phase  angle  distributions  … a phenomenon  that  can
readily  occur  in  real  data  … can under  some  circumstances  produce  statistical  errors  and  uninterpretable
results  when  using  PAC. We  propose  a novel  debiasing  procedure  that,  through  a simple  linear  subtraction,
effectively  ameliorates  this  phase  clustering  bias.
Results: Simulations  showed  that  debiased  PAC (dPAC) accurately  detected  the  presence  of  coupling.  This
was  true  even  in  the  presence  of  moderate  noise  levels,  which  in”ated  the  phase  clustering  bias. Finally,
dPAC was  applied  to  intracranial  sleep  recordings  from  a macaque  monkey,  and  to  hippocampal  LFP data
from  a freely  moving  rat,  revealing  robust  cross-frequency  coupling  in  both  data  sets.
Comparison  with  existing  methods:  Compared  to  dPAC, regular  PAC showed  in”ated  or  de”ated  estimations
and  statistically  negative  coupling  values,  depending  on  the  strength  of  the  bias  and  the  angle  of  coupling.

Noise  increased  these  unwanted  effects.  Two  other  frequently  used  phase…amplitude  coupling  methods
(the  Modulation  Index  and  Phase Locking  Value)  were  also  affected  by  the  bias, though  allowed  for
statistical  inferences  that  were  similar  to  dPAC.
Conclusion:  We  conclude  that  dPAC provides  a simple  modi“cation  of  PAC, and  thereby  offers  a cleaner
and  possibly  more  sensitive  alternative  method,  to  more  accurately  assess phase…amplitude  coupling.
. Introduction
Neurophysiological  signals  are strongly  oscillatory  (Varela  et  al.,
001;  Buzsáki  and  Draguhn,  2004;  Wang,  2010 ). Moreover,  several
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theoretical  predictions  and  empirical  “ndings  demonstrate  that
interactions  among  activities  in  different  frequencies  are important
for  information  processing  and  transmission  (Lakatos  et  al., 2005;
Palva et  al., 2005;  Jensen and  Colgin,  2007;  Canolty  and  Knight,
2010 ). However,  standard  time…frequency  analyses  (such  as Mor-

let  wavelet  convolution  and  the  short-time  Fourier  transform)  treat
each frequency  of  oscillatory  activity  as an independent  process  and
therefore  preclude  quanti“cation  of  interactions  across frequency
bands.
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Cross-frequency  coupling  (CFC) analyses  are speci“cally
esigned  to  uncover  relationships  among  dynamics  at  different  fre-
uencies.  This  •nestingŽ  of  oscillations  has been  shown  to  occur

n  both  humans  and  animals  (Jensen and  Colgin,  2007;  McGinn
nd  Valiante,  2014 ), and  to  relate  to  various  task-related  processes
Canolty  et  al., 2006 ), including  perception  (Händel  and  Haarmeier,
009;  Voytek  et  al., 2010;  Gross et  al., 2013 ), cognitive  control
Cohen  et  al., 2009;  Dürschmid  et  al., 2013 ), memory  (Sauseng
t  al., 2008;  Tort  et  al., 2009;  Axmacher  et  al., 2010;  Belluscio
t  al., 2012 ), and  emotional  processing  (Popov  et  al., 2012 ). Cross-
requency  coupling  has also  been  related  to  spontaneous  activity
uring  sleep  (Cox et  al., 2014 ) and  •default-modeŽ  resting  state
Foster  and  Parvizi,  2012 ). In  general,  cross-frequency  coupling
s proposed  to  re”ect  a common,  fundamental  principle  of  how
europhysiological  processes in  the  brain  can be temporally  orga-
ized  across different  frequency  bands  (Lisman,  2005;  Canolty  and
night,  2010 ), and  thus,  different  time  scales.

There  are several  quantitative  methods  to  identify  cross-
requency  coupling  (Tort  et  al., 2010 ). Most  methods  are based
n  examining  the  distribution  of  power  values  at  a relatively
igher  frequency  band  with  respect  to  the  phase  values  at  a rel-
tively  lower  frequency  band  (phase…amplitude  coupling;  lower
requency  power  values  can be used  instead  of  phase, but  the
oncept  is  the  same).  The activities  from  both  frequency  bands
re simultaneously  recorded,  typically  from  the  same electrode
or  from  different  electrodes  in  the  case of  long-range  interareal
ross-frequency  coupling).  The null  hypothesis  in  this  analysis
pproach  is that  the  distribution  of  higher-frequency  power  val-
es over  lower-frequency  phase  values  is uniform;  deviations  from

his  uniform  distribution  indicate  the  presence  of  cross-frequency
oupling.  The various  cross-frequency  coupling  analysis  methods
iffer  mainly  in  how  this  power-by-phase  distribution  is created  or
tatistically  evaluated.

Many  cross-frequency  coupling  analyses  are assumed  to  be
nsensitive  to  dynamics  within  the  modulating,  lower-frequency
and,  such  as a non-uniform  occurrence  of  phase  values  (Aru
t  al., 2014 ). Such non-uniformity  can occur  when  the  oscillatory
henomenon  under  investigation  does not  resemble  an idealized
ine  wave,  and  the  relative  contribution  of  different  phases to  the
ampled  signal  is  uneven;  this  will  be demonstrated  below.  It  is
enerally  believed  that  this  situation  is adequately  remedied  by
ermutation  testing,  in  which  random  shuf”ing  ensures  that  power
alues  and  phase  values  are randomly  coupled,  thus  accounting  for
ossible  asymmetries  in  the  distribution  of  power  or  phase  that
ould  artifactually  bias  the  estimate  of  cross-frequency  coupling
Cohen, 2014 ).

The purpose  of  this  paper  is  to  show  that  one  commonly  used
FC analysis  method  in  particular  (phase…amplitude  coupling  or
AC; Canolty  et  al., 2006 ) can be sensitive  to  within-frequency  non-
niform  phase  angle  distributions,  which  may  introduce  biases

n  some  circumstances.  After  describing  two  other  methods  for
ssessing CFC (MI  and  PLV), we  introduce  the  bias  and  demon-
trate  how  it  might  arise  in  neural  time  series  data.  We  then
ntroduce  a simple  but  effective  debiasing  correction  and  demon-
trate  that  this  approach  successfully  minimizes  the  bias  in  PAC,
hus  allowing  closer  approximations  of  true  cross-frequency  cou-
ling.  Matlab  scripts  to  produce  the  simulations  and  perform  the
nalyses  described  in  this  paper  are available  at  github  (https://
ithub.com/joramvd/dPAC ).

. Three  methods  to  analyze  cross-frequency

hase…amplitude  coupling

In  this  paper,  we  focus  on  three  established  methods  of  ana-
yzing  cross-frequency  coupling  of  phase-modulated  power  (we
nce Methods  254 (2015)  60…72 61

hereafter  use •CFCŽ to  refer  to  this  type  of  cross-frequency  cou-
pling).  We  decided  to  focus  on  these  three  methods  because they
are the  most  commonly  used  methods  in  the  literature.  In  the
•Implications  and  limitations•  section  we  speculate  on  the  relevance
of  our  “ndings  for  other  methods.

2.1. Phase…Amplitude Coupling  (PAC)

The Phase…Amplitude  Coupling  (PAC) method  was  popularized
by  Canolty  and  colleagues  (Canolty  et  al., 2006 ). In  PAC, vectors  in
polar  space are de“ned  by  the  angle  from  the  frequency  for  phase,
and  a length  de“ned  by  the  power  from  the  frequency  for  power.
Each vector  corresponds  to  a time  point,  and  the  length  of  the  aver-
age vector  is  taken  as a quanti“cation  of  CFC. The null  hypothesis
… that  there  is no  relationship  between  power  and  phase  … would
produce  an average  vector  length  of  zero.  In  contrast,  a non-uniform
distribution  of  power-adjusted  phase  angles  in  polar  space would
produce  a PAC value  that  is  greater  than  zero.  Mathematically,  PAC
is de“ned  by:

PAC =

�
�
�
�
�

1
n

n�

t = 1

at ei� t

�
�
�
�
�

(1)

where  n signi“es  the  total  number  of  time  points,  at the  amplitude
(or  power)  of  the  modulated  frequency  (frequency  for  power)  and
� t the  phase  of  the  modulating  frequency  (frequency  for  phase)  at
time  point  t ;  i  is  the  imaginary  operator.  As can be seen, the  phase
angles  are “rst  converted  to  complex  space by  the  Euler  transform�

eik
�

.
The statistical  signi“cance  of  the  PAC value  can be determined

by  comparing  it  against  a distribution  of  surrogate  PAC values  gen-
erated  via  permutation  testing,  in  which  the  power  values  are
shuf”ed  with  respect  to  the  phase  values.  The idea  is that  the  shuf-
”ing  not  only  allows  for  statistical  evaluation,  but  also  accounts  for
possible  outliers  or  non-uniform  phase  angle  distributions  (Cohen,
2014 , Chapter  30).

2.2. Modulation  Index

A second  CFC measure  that  is  commonly  used  is the  Modulation
Index  (MI),  as proposed  by  Tort  and  colleagues  (Tort  et  al., 2010 ).
The logic  behind  MI  is  to  discretize  the  phase  angle  time  series  (of
the  frequency  for  phase)  into  N phase  bins,  and  to  compute  the
average  power  of  the  modulated  frequency  for  power  in  each bin
j. The resulting  phase…amplitude  histogram  should  show  a non-
uniform  distribution  of  power  over  the  N phase  bins.  To quantify
coupling,  the  MI  computes  deviation  from  a uniform  distribution
using  information  theory  (see Tort  et  al., 2010  for  details):

MI  =
DKL (P, U)

log (N)
(2)

where  N signi“es  the  number  of  phase  bins,  and  DKL is the
Kullback…Leibler  distance  between  the  phase  distribution  P and  the
uniform  distribution  U:

DKL (P, U) =  log (N) +

N�

j= 1

P(j) log [P(j)] (3)

As with  PAC, the  statistical  signi“cance  of  MI  is  commonly  deter-
mined  by  shuf”ing  the  power  time  series  with  respect  to  the  phase

angle  time  series,  and  re-evaluating  the  distribution  of  power  over
phase  bins;  because the  phase-power  relationship  is now  random,
this  should  generate  a null-distribution  of  MI  values  under  the  null-
hypothesis  of  a uniform  distribution  of  power  over  phase  bins.
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Fig.  1. Non-sinusoidal  oscillatory  signals  show  non-uniform  phase  angle  distribu-
tions.  (A)  Amplitude  (top  left)  and  phase  angles  (bottom  left)  of  a 1.6 s sample  from
a 10  s simulated  signal  of  concatenated,  detrended  Gaussians with  width  of  g = 0.01
and  peaks  every  200  ms  (i.e.  a 5 Hz  non-sinusoidal  oscillation);  right:  100  randomly
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.3. Phase Locking Value

A third  method  that  can quantify  CFC is described  in  Cohen
2008) , Colgin  et  al. (2009) , Mormann  et  al. (2005)  and  has been
ermed  by  Tort  et  al. (2010)  the  Phase Locking  Value  (PLV). The
ogic  behind  PLV is that  if  the  frequency  for  power  is driven  by
he  phase  angles  of  the  frequency  for  phase, the  time  series  of  the
ower  envelope  should  itself  oscillate  at  the  frequency  for  phase.
ith  the  Hilbert  transform  of  the  power  values,  one  can obtain  the

hase  angles  of  this  oscillation.  Next,  with  these  two  time  series  of
hase  angles  (one  from  the  lower  frequency  for  phase, one  from
he  power  envelope  of  the  higher  frequency  for  power),  a Phase
ocking  Value  can be computed,  which  is conceptually  similar  to
ow  inter-site  phase  synchronization  is computed:

LV =

�
�
�
�
�

1
n

n�

t = 1

ei(� p,t Š � A,t )

�
�
�
�
�

(4)

Here,  � p,t is the  phase  of  the  modulating  frequency  at  time  point
, and  � A,t the  phase  of  the  amplitude  (i.e.  power)  time  series  of
he  modulated  frequency.  By subtracting  these  phase  angle  vectors
nd  computing  their  average  length,  any  consistent  relationship
etween  the  frequency  for  phase  and  the  power  envelope  phase
ngles  will  result  in  a value  greater  than  0, and  with  a maxi-
um  value  of  1 for  perfect  coupling.  Again,  signi“cance  of  PLV

s determined  through  permutation  testing,  by  computing  a null-
istribution  of  surrogate  PLV that  are obtained  by  shuf”ing  one  of

he  two  phase  angle  time  series.

. Non-uniform  phase  angle  distributions  can  bias
ross-frequency-coupling  measures

.1. A simulation  of asymmetric  oscillations

As described  in  Section  2.1, the  logic  behind  the  PAC metric  is
hat  a uniform  phase  angle  distribution  has an average  vector  length
f  zero,  and  multiplying  each angle  with  the  power  values  of  the
odulated  signal  will  change  this  zero  length  vector  into  a non-zero

ength  vector  when  there  is phase…amplitude  coupling:  this  length
e”ects  the  strength  of  coupling.  However,  in  situations  where  the
hase  distribution  is non-uniform,  this  distribution  already  has a
on-zero  average  vector  length  before  multiplying  the  angles  by
ower,  resulting  in  a possible  under-  or  overestimation  of  true
oupling.

To illustrate  the  bias, we  created  a signal  that  oscillated  at  5 Hz
see Fig. 1), but  its  cycles  were  characterized  by  non-sinusoidal
aussian  shaped  •cyclesŽ of  width  g:

(t ;  c) =  eŠ(t Šc)2 / 2g2
(5)

hich  were  subsequently  concatenated  into  one  time  series  by

(t ;  c) =

T�

c

G(t ;  c) (6)

here  c denotes  the  center  times  of  the  Gaussians. This  time  series
roduces  an oscillatory  signal  with  peaks  at  center  times  c. More-
ver,  this  oscillatory  signal  is  asymmetric  around  the  x-axis,  in  that

 cycle•s peak  has a different  shape  than  a cycle•s trough.  We  used
 simulated  10  s time  series  with  a sampling  rate  of  1000  Hz, with  c

ncreasing  in  steps  of  200  ms,  yielding  a 5 Hz  signal  (hereafter  called

theta AŽ). Implementing  these  values  into  Eqs. (5)  and  (6) , we  get

(t ) =  eŠ(t Š0)2 / 2g2
+  eŠ(t Š0.2)2 / 2g2

+  eŠ(t Š0.4)2 / 2g2

+  · · · +  eŠ(t Š10)2 / 2g2
(7)
selected  phase  angles  (grey)  plotted  in  polar  space, together  with  the  average  vector
(black)  illustrating  the  phase  clustering  (PC) effect.  (B)  As in  (A),  for  g = 0.03.  (C) As
in  (A),  for  g = 0.05.

where  t  is  time  in  seconds. In  Fig. 1, a 1600  ms  example  of  theta A is
shown  with  g = 0.01  (Fig. 1a), g = 0.03  (Fig. 1b)  and  g = 0.05  (Fig. 1c),
together  with  the  phase  angle  time  series  (phase  angles  were
extracted  from  the  Hilbertized  detrended  time  series),  and  polar
space phase  angle  distributions  of  100  randomly  selected  angles
from  the  full  10  s. What  is  evident  from  this  “gure  is that  the  dis-
tribution  of  theta A phase  angles  is non-uniform  for  low  values  of  g
that  result  in  more  •spike-likeŽ  oscillations  (with  g = 0.05  the  signal
approaches  a perfect  sine  wave).

The extent  of  this  non-uniformity  can be quanti“ed,  re”ecting
the  strength  of  phase  clustering  (PC), using  the  following  equation
(note  that  this  formula  is similar  to  inter-trial  phase  clustering;
Cohen, 2014 ):

PC =
1
n

n�

t = 1

ei� t (8)

In  words,  PC is the  average  of  the  complex  vector  of  phase  angles,
from  which  one  can extract  the  magnitude  (the  absolute  value,
re”ecting  strength  of  clustering)  and  phase  (re”ecting  •preferredŽ
angle  of  clustering).  PC should  be zero  in  case of  a uniform  phase
distribution  and  greater  than  zero  in  case of  a non-uniform  phase
distribution.  In  Fig. 1, the  three  different  concatenated  Gaussians
had  PC values  of  0.46,  0.13  and  0.01,  respectively.  This  thus  shows
how  asymmetric  oscillatory  signals  can have  non-uniform  phase
distributions.  As can be seen in  Fig. 1, clustering  was  around  �
radians.  Importantly,  in  case of  phase…amplitude  coupling,  power

values  of  the  frequency  for  power  will  also  demonstrate  a favored
angle  of  maximal  coupling,  and  preferred  PC and  CFC angles  may  or
may  not  coincide.  As will  be shown  later,  differences  in  preferred
angle  of  PC and  CFC can affect  CFC estimations  in  a non-trivial  way.
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.2. Performance of different  CFC metrics

To illustrate  how  phase  clustering  affects  measures  of  cross-
requency  coupling,  we  additionally  created  a complex  sine  wave
hereafter  called  •gammaŽ)  of  the  form  aei2� ft , where  f = 30, and

 = theta A + 0.5. In  Fig. 2a, a 800  ms  example  of  theta A is shown
ith  g = 0.01,  together  with  the  modulated  gamma  signal.  From
isual  inspection,  one  can immediately  see that  the  power  of  the
amma  signal  fully  depends  on  the  phase  of  the  theta A cycle,  i.e.
ure  phase…amplitude  coupling.  Applying  the  PAC Eq. (1)  to  this
ignal,  where  for  a we  used  the  power  of  gamma  (abs(gamma)  in
atlab)  and  for  �  the  phase  angles  of  theta A (obtained  through  the
ilbert  transform:  angle(hilbert(thetaA)) , the  resulting  PAC
alue  was  0.08.  This  is  illustrated  in  Fig. 2a by  the  red  vector  in  the
olar  plot.  Note  that,  although  the  angle  of  maximal  coupling  was
et  at  0� , the  angle  of  the  PAC vector  appeared  at  the  opposite  side
n  the  polar  plot:  at  1�  which  is the  preferred  angle  of  PC.

When  gamma  was  modulated  by  a theta A signal  with  g = 0.05,
ecomputing  PAC showed  a more  than  twofold  increased  cou-
ling  value  of  0.18  (Fig. 2b).  Moreover,  the  angle  of  PAC was  now
t  0� , and  theta A did  not  show  phase  clustering.  This  illustrates
ow  a non-uniform  phase  distribution  •pulledŽ  the  direction  of  the
verage  vector  in  the  PAC computation  towards  the  preferred  PC
ngle,  and  away  from  the  CFC angle,  while  reducing  the  vector•s

ength.  This  happened  even  though  the  true  simulated  coupling
as  exactly  the  same in  both  scenarios  (the  a in  aei2� ft for  creating

he  gamma  signal  was  set  to  be the  theta A signal  in  both  cases).
We  also  computed  MI  with  Eqs. (2)  and  (3) . The

hase…amplitude  histograms  shown  in  Fig. 2 illustrate  how
he  bias  of  non-uniform  phase  distributions  can also  affect  MI:  in
he  case of  strong  PC of  theta A around  1� , gamma  power  was  in
act  evenly  distributed  over  most  theta  phase  angles,  and  as such
he  quanti“cation  of  deviation  from  non-uniformity  (which  is the
asis of  the  MI  metric)  resulted  in  a lower  MI  (0.037)  compared

o  when  theta A did  not  show  PC (0.049).  In  the  latter  case, the
on-uniform  distribution  of  gamma  power  values  over  theta  phase

ngles  resembled  a Gaussian.

The PLV (Eq. (4) ) gave a value  of  1.0 for  both  scenarios  (i.e.  per-
ect  CFC). As described  above,  the  logic  behind  PLV is to  extract  the
hase  angles  from  the  power  envelope  time  series  of  the  modulated
 right:  gamma  power  distribution  over  18  bins  of  theta  phase  angles.  (B)  As in  (A),
 in  this  “gure  legend,  the  reader  is referred  to  the  web  version  of  this  article.)

frequency  for  power,  and  compute  phase  locking  between  the  two
phase  angle  time  series.  In  this  simulation,  one  can see from  the
real  signals  shown  in  the  top  panel  of  Fig. 2a and  b that  the  power
envelope  of  gamma  will  be exactly  the  same as the  theta A sig-
nal.  This  produces  a constant  phase  angle  difference  of  zero,  hence
producing  a maximal  PLV of  1.0.

To evaluate  how  the  different  CFC metrics  would  ”uctuate  as
a function  of  phase  clustering,  we  repeated  the  above  simulation
and  changed  the  Gaussian  widths  of  theta A in  50  steps  of  linearly
increasing  values  of  g from  0.001  (strong  clustering)  to  0.08  (very
little  clustering):  the  results  are shown  in  Fig. 3a. As PC decreased
(top  left  panel),  PAC “rst  decreased  to  zero,  and  then  increased
again  (solid  line  in  top  right  panel).  This  can be explained  by  the
•pullingŽ  of  phase  clustering  in  polar  space:  as can be seen in  Fig. 2,
the  angle  of  PAC ”ipped  from  1�  to  0�  for  these  two  scenarios  of
strong  and  absent  PC; at  a certain  in  between  degree  of  non-uniform
phase  distribution,  PC and  CFC will  cancel  each other  out,  resulting
in  a mean  vector  length  of  0.

Here,  the  phase  angles  of  theta A were  clustered  around  1� ,
which  was  opposite  to  the  angle  of  maximal  CFC (0� ). Indeed,  when
shifting  the  theta A signal  with  � , the  preferred  angles  of  CFC and
PC were  both  at  �  (in-phase),  leaving  PAC relatively  unchanged
(dashed  line  in  Fig. 2a top  panel).  Furthermore,  PAC dropped  when
high  g values  eventually  produced  Gaussians that  were  wider  than
one  cycle  of  a 5 Hz  oscillation  (the  distance  between  the  center
times  c in  Eqs. (5)  and  (6) ). This  drop  can be expected,  because
the  oscillatory  characteristic  of  the  signal  became  dampened,  until
gamma  power  was  •modulatedŽ  by  a nearly  ”at  line.

MI  was  also  in”uenced  by  the  width  of  the  cycles  (and  thus  by
the  phase  clustering  bias):  with  very  low  g, theta A approached  a
spiking  instead  of  oscillatory  signal,  resulting  in  gamma  power  val-
ues being  evenly  distributed  over  most  theta  phase  bins  (see also
Fig. 2a). With  increasing  g, the  theta A signal  initially  became  more
sinusoidal,  yielding  increasing  MI  values.  Finally,  high  g values  with
Gaussians encompassing  more  than  one  theta  cycle  made  the  dis-
tribution  of  gamma  power  over  theta  phase  completely  uniform.

Interestingly,  MI  appeared  insensitive  to  the  angle  of  maximal  cou-
pling,  which  can be explained  by  the  fact  that  MI  does not  use the
Euler  transform  and  thus  does not  take  into  account  the  angle  of
maximal  coupling.
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A) Phase non-uniformity affects CFC: non-filtered
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Fig.  3. Phase…amplitude  coupling  as a function  of  the  Gaussian  width  of  non-sinusoidal  theta.  (A)  CFC metrics  (top  to  bottom:  PAC, MI,  PLV) as well  as phase  clustering  (PC)
for  CFC being  anti-phase  (solid  lines)  and  in-phase  (dashed)  with  PC, directly  applied  on  the  simulated  time  series.  (B)  As in  (C), after  adding  the  two  signals,  and  applying
b

u
P
1
g
c
g
f
v

a
N
s
r
r

3

b
t
t
w
h
r
t
n
t
s
a
f
f
“
t
C
f

and-pass  “lters  for  theta  and  gamma.

PLV showed  a constant  perfect  coupling  value  of  1.0 for  all  g val-
es when  CFC was  anti-phase  with  PC. In  contrast,  when  CFC and
C were  in-phase,  PLV approached  zero  for  low  g and  increased  to
.0 for  increasing  g. This  was  due  to  the  fact  that,  for  the  lowest

 value,  the  phase  angle  differences  between  the  two  time  series
lustered  around  � /2  and  3� /2,  thus  canceling  each other  out;  this
radually  changed  to  more  and  more  clustering  of  phase  angle  dif-

erences  around  1�  (i.e.  the  angle  of  maximal  CFC), thus  producing
alues  closer  to  1.

We  have  thus  far  presented  evidence  that  non-uniform  phase
ngle  distributions  can bias  measures  of  cross-frequency  coupling.
on-uniform  phase  angle  distributions  can result  from  imperfect
inusoidal  processes (as simulated  here),  in  addition  to  •phase
esetŽ and  other  non-stationarities  often  observed  around  task-
elated  activities.

.3. The effect of band-pass “ltering

In  real  electrophysiological  recordings,  one  usually  applies  a
and-pass  “lter  to  extract  the  dynamics  of  a speci“c  frequency  from
he  broad-band  data.  In  theory,  the  narrower  the  band  of  the  “l-
er,  the  more  the  result  will  approach  a perfect  sinusoidal  signal
ith,  consequently,  uniformly  distributed  phase  angles.  However,
ighly  narrow-band  “lters  come  at  the  expense  of  poor  tempo-
al  precision,  and  are thus  rarely  used  in  neuroscience;  widening
he  band  leaves  room  for  residual  phase  clustering  bias  through
on-uniform  phase  distribution.  We  illustrated  this  by  repeating

he  above  simulations,  though  now  we  “rst  summed  the  theta A

ignals  and  the  coupled  gamma  signals,  and  subsequently  applied
 band-pass  “lter  in  the  theta  (3…7 Hz)  and  gamma  (25…35 Hz)
requency  range.  Filter  kernels  were  constructed  using  Matlab•s
ir1  and  filtfilt  functions.  On the  resulting  theta  and  gamma

ltered  signals  of  the  different  g values,  we  applied  the  Hilbert
ransform  to  extract  power  and  phase, and  computed  the  different
FC metrics.  As can be seen in  Fig. 3b, PC was  essentially  removed

or  in-phase,  but  not  for  anti-phase  coupling.  Moreover,  PAC still
”uctuated  as a function  of  the  non-sinusoidal  shape  of  the  theta A

signal  before  band-pass  “ltering,  where  the  bias  even  worsened  for
MI  and  PLV.

In  sum,  we  showed  that,  when  computing  CFC with  different
mathematical  approaches,  in  particular  with  PAC, a phase-speci“c
characteristic  of  the  modulating  frequency  for  phase  in”uenced  the
estimation  of  a phase-power  relationship,  even  though  it  was  inde-
pendent  of  this  relationship.  We  now  turn  to  a proposed  method
to  debias  PAC. In  Section  6 (•Implications  and  limitationsŽ),  we
speculate  on  ways  to  debias  MI  and  PLV.

4. Debiasing  cross-frequency-coupling:  Theory  and
implementation

Recently,  we  introduced  a simple  modi“cation  to  the  PAC met-
ric  in  an analysis  of  spindle-beta  coupling  (11…16 Hz  and  20…25 Hz,
respectively)  in  human  electrophysiological  sleep  data  (Cox et  al.,
2014 ). This  method  entails  a linear  removal  of  the  phase  cluster-
ing  bias, resulting  in  debiased  PAC (dPAC). More  speci“cally,  dPAC
subtracts  the  average  vector  of  the  modulating  phase  angles  from
the  Euler  transform  of  each phase  angle,  before  multiplying  them
with  the  modulated  power  values:

dPAC ==

�
�
�
�
�

1
n

n�

t = 1

at (ei� t Š ¯� )

�
�
�
�
�

(9)

where Š �  is  de“ned  by

¯� =
1
n

n�

t = 1

ei� t (10)

Note  that  Eq. (10)  is  in  fact  identical  to  the  phase  clustering  Eq.
(8)  (and,  thus,  the  average  vector  is  still  a complex  number,  contain-

ing  both  length  and  angle).  The logic  behind  the  dPAC measure  is to
subtract  the  phase-clustering  bias  (both  in  terms  of  length  and  pre-
ferred  phase  angle)  from  each phase  angle  prior  to  computing  PAC.
This  effectively  •uniformizesŽ  the  phase  angle  distribution.  Another

https://www.researchgate.net/publication/269715400_Slow_Oscillations_during_Sleep_Coordinate_Interregional_Communication_in_Cortical_Networks?el=1_x_8&enrichId=rgreq-91bfc2a678cccdf0df5c3cf1080512f7-XXX&enrichSource=Y292ZXJQYWdlOzI4MDYxNDA1NTtBUzoyNjA1NDU1OTcxNDUwODhAMTQzOTEzMDMxOTM0Mw==
https://www.researchgate.net/publication/269715400_Slow_Oscillations_during_Sleep_Coordinate_Interregional_Communication_in_Cortical_Networks?el=1_x_8&enrichId=rgreq-91bfc2a678cccdf0df5c3cf1080512f7-XXX&enrichSource=Y292ZXJQYWdlOzI4MDYxNDA1NTtBUzoyNjA1NDU1OTcxNDUwODhAMTQzOTEzMDMxOTM0Mw==
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Fig.  4. Procedure  of  non-uniform  phase  angle  and  phase…amplitude  coupling  angle
manipulations.  (A)  Gaussian  distributions  of  random  numbers  cut-off  at  �  and  Š �
were  created  with  different  widths  g, shown  here  for  four  levels  of  g. (B)  Corre-
sponding  phase  distributions  represented  in  polar  space, with  grey  lines  showing
the  different  angles  (a random  selection  of  100  out  of  10,000)  and  the  red  line  show-
ing  the  average  vector  length  of  PC, increasing  with  decreasing  g. (C) Theta  (black)
and  theta-modulated  gamma  (red)  sine  waves,  for  different  theta…gamma  coupling
angles  of  0�  (straight),  � /2  (dashed)  and  �  (dotted).  (For  interpretation  of  the  refer-
ences to  color  in  this  “gure  legend,  the  reader  is referred  to  the  web  version  of  this
article.)
J. van  Driel  et al. /  Journal of Neu

ay  to  interpret  the  debiasing  term  is that  it  shifts  the  phase  angle
istribution  such  that  the  distribution  has a mean  of  zero.  Finally,
he  debiasing  term  can also  be thought  of  as making  the  distribution
f  phase  angles  independent  of  its  mean  vector  (both  in  relation  to

he  magnitude  and  angle  of  this  vector).  Following  removal  of  the
ias, the  debiased  phase  values  are multiplied  by  the  correspond-

ng  power  values,  just  as in  the  regular  PAC Eq. (1) . Because this
odi“cation  is modest,  it  is  also  easy to  implement,  and  allows  for

imilar  statistical  approaches  as used  for  PAC in  order  to  evaluate
he  signi“cance  of  observed  coupling  in  recorded  data  (for  example,
-transforming  observed  dPAC with  respect  to  a null-distribution
f  surrogate  dPAC values  obtained  through  a permutation  testing
rocedure;  see below).

.1. Clustering  strength  by coupling  angle interaction

We  now  turn  to  a series  of  simulations  to  assess the  impact  of
he  debiasing  term  in  PAC. In  the  “rst  simulation,  we  used  a per-
ect  sine  wave  to  create  a 5 Hz  signal  (hereafter  called  •thetaŽ),  and
anipulated  the  presence  of  the  phase  clustering  bias  by  selectively

ampling  from  the  phase  angle  distribution  of  theta.  (This  is  con-
eptually  similar  to  the  Gaussian  procedure  used  above,  but  allows
etter  control  over  the  distribution  of  phase  angles.)  In  addition,
e  manipulated  the  angle  of  maximal  coupling  with  respect  to  the
ngle  of  theta  PC in  a gradual  manner,  to  reveal  possible  interactions
etween  the  clustering  bias  and  coupling  angle.

Theta  was  now  described  as a complex  signal:  aei2� ft , where
 = 5, and  a = 5. For gamma  we  used  f = 30  and  for  a we  took  the  real
art  of  the  complex  theta  signal  plus  a constant  to  prevent  nega-
ive  power  values  (real(theta)  + 6). To introduce  phase-clustered
on-uniformity  in  the  theta  angle  distribution,  we  “rst  created  a
ormal  Gaussian  distribution  of  size n and  width  � , where  n was
qual  to  twice  the  number  of  time  points  present  in  the  simulated
ignals,  and  the  values  were  cut-off  at  Š �  and  � . This  created  a sur-
ogate  non-uniform  distribution  of  phase  angles  that  approached
he  shape  of  a Gaussian, depending  on  � . The mean  of  this  distri-
ution  will  always  be zero,  resulting  in  PC with  a preferred  angle  at
� . Next,  from  the  theta  phase  angles  only  those  were  retained  that
atched  these  surrogate  phase  values,  which  made  the  theta  phase
ngle  distribution  also  non-uniform  (Fig. 4a). In  an iterative  simu-

ation  procedure,  we  changed  �  in  50  logarithmic  steps  from  5 (a
lose-to-uniform  distribution)  to  0.5 (strong  clustering;  see Fig. 4b).
n  addition,  every  PC level  was  combined  with  theta  being  tempo-
ally  shifted  with  respect  to  gamma,  in  50  steps  of  2 ms,  yielding

 gradual  change  in  angle  of  maximal  CFC from  0�  to  �  (Fig. 4c).
s a result,  because PC was  always  0� , the  angle  of  maximal  CFC
hanged  from  being  in-phase  to  being  anti-phase  with  the  preferred
ngle  of  PC.

At  each level  of  PC strength  and  coupling  angle,  PAC, dPAC, MI
nd  PLV were  computed  using  Eqs. (1),  (9),  (10),  (2),  (3)  and  (4) .
his  yielded  coupling  values  in  •clustering-angle-spaceŽ,  which  we
ompared  to  the  default  scenario  of  no  phase  clustering  and  0�
oupling,  by  computing  the  percent  signal  change.  This  conversion
acilitates  evaluation  because positive  numbers  indicate  over-
stimation  while  negative  numbers  indicate  under-estimation  of
FC, and  the  values  are comparable  across the  different  CFC metrics.
s can be seen in  Fig. 5a, dPAC improved  dramatically  compared

o  PAC in  terms  of  deviance  from  the  •trueŽ  coupling,  with  only
nder-estimations  (blue  colors)  during  strong  phase  clustering  bias

n-  and  anti-phase  with  CFC. PAC, in  contrast,  showed  strong  over-
stimations  (dark  red)  when  PC was  maximal  and  in-phase  with
FC, while  MI  showed  strong  under-estimations  during  PC in-phase

ith  CFC and  slight  overestimations  during  PC anti-phase  with  CFC.
hus, PAC and  MI  seemed  to  respond  in  opposite  directions  to  the
hase  bias. The PLV showed  underestimations  with  increasing  PC,

ndependent  of  the  angle  of  maximal  coupling.  Note  that  this  is  in
contrast  to  the  non-sinusoidal  theta  simulation  (Fig. 3), in  which
PLV and  not  MI  was  affected  by  the  coupling  angle;  this  may  be due
to  the  unnatural  sampling  method  to  accentuate  phase  clustering
bias  in  this  simulation.

In  sum,  dPAC reduced  the  phase  clustering  bias  that  was  present
in  PAC, which  in  turn  depended  on  the  difference  between  the  angle
of  phase  clustering  and  the  angle  of  maximal  coupling.  The results
so far,  however,  do  not  demonstrate  statistical  signi“cance;  it  is
possible  that  the  coupling  remains  statistically  signi“cant  despite
the  misestimations.  We  thus  used  a permutation  testing  routine
in  which  we  cut-and-shifted  random  intervals  of  the  theta  sig-
nal  for  1000  iterations,  while  leaving  the  gamma  signal  intact
(the  same method  recommended  by  Canolty  et  al., 2006 ). This
removes  the  phase…amplitude  relationship  but  preserves  the  tem-
poral  structure  of  the  signals  (this  temporal  structure  would  have
been  destroyed  when  completely  shuf”ing  phase  values).  We  com-
puted  PAC, dPAC, MI  and  PLV at  every  iteration,  giving  distributions
of  surrogate  coupling  values  under  the  null  hypothesis  of  no  cou-
pling.  We  did  this  permutation  routine  at  every  clustering-by-angle
point  of  the  simulation  described  above.  Next,  we  z-transformed

the  •observedŽ  coupling  values  at  each point,  by  computing  the

https://www.researchgate.net/publication/6817257_High_Gamma_Power_Is_Phase-Locked_to_Theta_Oscillations_in_Human_Neocortex?el=1_x_8&enrichId=rgreq-91bfc2a678cccdf0df5c3cf1080512f7-XXX&enrichSource=Y292ZXJQYWdlOzI4MDYxNDA1NTtBUzoyNjA1NDU1OTcxNDUwODhAMTQzOTEzMDMxOTM0Mw==
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Fig.  5. Phase bias  by  coupling  angle  simulation  results.  (A)  Percent  signal  change  of  biased  CFC relative  to  CFC in  case of  uniform  theta  phase  angles  (i.e., no  bias)  as a function
of  varying  levels  of  phase  clustering  bias  (y-axis,  maximum  clustering  bias  at  top),  and  differing  angles  of  maximal  coupling  (x-axis).  Red colors  denote  overestimation  and
blue  colors  underestimation  with  respect  to  true  coupling;  solid  black  line  demarcates  2 standard  deviations.  (B)  Permutation  testing  results.  Green  color  denotes  positive
coupling,  purple  color  denotes  negative  coupling;  statistical  threshold  at  p = 0.001  is shown  with  black  outline;  p = 0.05  with  red  outline.  These thresholds  were  uncorrected
for  multiple  comparisons,  and  serve  as a qualitative  marker  of  signi“cance.  (For  interpretation  of  the  references  to  color  in  this  “gure  legend,  the  reader  is referred  to  the
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tatistical  distance  from  the  mean  of  the  null  distributions,  for
xample,  for  dPAC:

PACz =
dPAC Š  mean (dPACnull )

std (dPACnull )
(11)

here  mean (dPACnull ) refers  to  the  mean  of  the  null  distribution,
nd  std (dPACnull ) to  the  standard  deviation.

Fig. 5b shows  the  results,  with  green  colors  indicating  cor-
ectly  identi“ed,  signi“cant  coupling.  PAC exhibited  a •bandŽ  of
ype-II  errors  (the  black  outline  for  p = 0.001  and  the  red  out-

ine  for  p = 0.05),  in  which  the  z-values  were  below  the  threshold
f  statistical  signi“cance,  leading  to  the  incorrect  conclusion  that

here  was  no  coupling  (i.e.  accepting  the  null-hypothesis  while  the
lternative  hypothesis  was  true).  Moreover,  PAC showed  negative
-values  for  strong  phase  clustering  bias  anti-phase  with  coupling
ngle  (blue-to-purple  colors  in  the  top  right  corner).  These values
re dif“cult  to  interpret  physiologically:  they  signify  less coupling
han  can be expected  by  random  phase…amplitude  relationships.
n  sharp  contrast,  dPAC, MI  and  PLV identi“ed  signi“cant  coupling
or  all  combinations  of  phase  clustering  bias  and  coupling  angle  (as
videnced  by  the  saturated  green  plots).

Taken  together,  this  simulation  showed  that  (1)  PAC and  MI
re in”uenced  by  the  phase  clustering  bias, in  seemingly  oppo-
ite  directions;  (2)  the  effect  of  the  bias  on  MI  can be mitigated
hrough  proper  statistical  procedures  (z-transformation  through
ermutation  testing);  (3)  the  bias  produces  Type-II  errors  and  unin-
erpretable  negative  z-values  for  PAC, which  are not  mitigated

y  permutation  testing;  (4)  dPAC is successful  in  mitigating  the
hase  distribution  biases, with  or  without  statistical  transforma-

ions.  dPAC thus  provides  an accurate  assessment  of  the  presence
f  cross-frequency  coupling  that  is  robust  to  biases.
4.2. Effects of noise

In  our  next  series  of  simulations,  we  assessed the  in”uence  of
noise  on  the  cross-frequency  coupling  measures.  The presence  of
noise  can in”ate  estimations  of  cross-frequency  coupling  (Cohen,
2014 ), because random  ”uctuations  in  the  frequency  for  power
can coincide  by  chance  with  phase  values  of  the  frequency  for
phase, and  because cross-frequency  coupling  (and  other  phase-
based)  measures  cannot  be negative  (thus  noise  is more  likely  to
in”ate  rather  than  de”ate  values).  To evaluate  whether  and  how  the
presence  of  noise  would  interact  with  the  phase  clustering  bias, we
“rst  set  PC to  a “xed  level  (by  taking  a width  �  of  1.5 for  creating
the  Gaussian-shaped  non-uniform  phase  angle  distributions;  see
above).  Next,  we  created  pink  noise  (noise  with  1/ f characteristics)
by  “rst  multiplying  n random  numbers  from  a normal  distribution
with  amplitude  k, where  n represents  the  number  of  time  points
(in  Matlab:  noise  = k*randn(1, n) ). Using  the  fast  Fourier  trans-
form,  the  power  spectral  density  of  this  white  noise  was  then  made

proportional  to  the  frequency  by  a factor  1/f,  Af /
�

f . As such,
pink  noise  is a better  approximation  of  (random)  electrophysiolog-
ical  activity  than  white  noise.  We  varied  k iteratively  in  50  linear
steps  from  0 to  10.  To make  the  analysis  more  similar  to  how  one
would  analyze  empirical  data,  we  “rst  summed  the  pink  noise,
theta,  and  theta-modulated  gamma  signals,  followed  by  band-pass
“ltering  in  the  theta  (3…7 Hz)  and  gamma  (25…35 Hz)  band,  and
extracted  theta  phase  and  gamma  power  with  the  Hilbert  trans-
form  (see Fig. 6 for  an example  of  the  noise  simulation  procedure).
With  the  resulting  time  series,  the  different  CFC metrics  could  be

calculated  using  Eqs. (1),  (9),  (10),  (2),  (3)  and  (4) . In  addition,
similar  to  the  clustering-by-angle  simulation,  we  combined  every
noise  level  k with  a time-shifted  theta  signal  and  computed  the
four  different  coupling  metrics  at  every  combination,  resulting  in  a
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A) Pure theta•gamma coupling

B) Noise + gamma + theta

C) Filtered signals
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Fig.  6. Procedure  of  band-pass  “ltered  noise  simulation.  (A)  A 5 Hz  sine  wave  (theta;
blue  dashed  line)  phase-modulates  a 30  Hz  sine  wave  (gamma;  red).  (B)  Summation
of  signals  shown  in  (A)),  with  broadband  pink  noise  as produced  by  Matlab•s  randn
function,  modulated  to  have  a 1/ f power  distribution.  (C) Band-pass  “ltering  sig-
nal  (B)  in  theta  (3…7 Hz)  and  gamma  (25…35 Hz)  reproduces  the  signals  of  (A)  with
additional  random  ”uctuations.  (For  interpretation  of  the  references  to  color  in  this
“
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5.1.1. Recording and time…frequency decomposition
gure  legend,  the  reader  is referred  to  the  web  version  of  this  article.)

oise-by-angle  space of  varying  coupling  values.  We  compared
hese  values  to  computed  CFC in  a situation  of  no  phase  cluster-
ng  bias  nor  noise  (i.e.  •pureŽ  coupling;  Fig. 6a), again  through  a
ercent  signal  change  transform.

The percent  signal  change  difference  scores (Fig. 7a) revealed
hat  dPAC now  showed  the  least  deviance  from  the  true  cou-
ling  value  (light-blue-to-white  colors)  compared  to  all  other  CFC
etrics.  PAC showed  under-  and  overestimations,  with  strong  over-
stimations  at  high  noise  levels  (dark  red  in  the  top  of  the  PAC
anel).  Again,  MI  seemed  to  show  a pattern  opposite  to  PAC: slight
verestimations  for  PC anti-phase  with  coupling  when  there  was
inimum  noise  (light  red  in  the  lower  right  corner),  and  under-
stimations  for  all  coupling  angles  for  even  moderate  noise  levels
dark  blue  in  the  top  75% of  the  plot).  PLV exhibited  underestima-
ions  that  increased  with  increasing  noise,  and  that  were  strongest
or  0�  and  �  coupling  angles.

The permutation  results  showed  that  the  •Type-II  error-bandŽ
f  non-signi“cant  PAC values  widened  as noise  became  stronger
Fig. 7b left  panel).  However,  starting  at  medium  noise,  all  four
easures  showed  non-signi“cant  coupling  (with  PAC showing  rel-
tively  more  negative  z-values).  In  other  words,  irrespective  of  the
ngle  of  maximal  coupling,  0�  phase  clustering  bias  in  combina-
ion  with  high  noise  levels  resulted  in  CFC values  that  fell  within
he  distribution  of  values  that  can be expected  by  chance.  Fur-
hermore,  dPAC showed  relatively  more  sensitivity  compared  to
he  other  measures  at  moderate-to-low  noise  levels:  MI  remained
on-signi“cant  around  a � /2  coupling  angle,  even  with  low  lev-

ls of  noise,  where  PLV fell  below  the  p = 0.05  but  mostly  above  the

 = 0.001  signi“cance  threshold.  As we  will  show  later,  dPAC indeed
nce Methods  254 (2015)  60…72 67

appears  more  sensitive  also  in  CFC analyses  on  empirical  data  (see
Section  5).

In  sum,  this  simulation  showed  that  the  phase  clustering  bias
present  in  PAC is exacerbated  by  noise,  in  that  it  results  in  stronger
overestimations,  and  more  Type-II  error  PAC values.  The bias  in  MI
and  PLV was  also  modulated  by  noise,  although  conversion  to  a
z-score  via  permutation  testing  mitigated  the  bias  (except  for  � /2
coupling  in  MI).  dPAC was  the  least  affected  measure.  Finally,  at
certain  noise  levels,  cross-frequency  coupling  was  removed  irre-
spective  of  the  phase  clustering  bias, resulting  in  non-signi“cant
statistical  values  for  all  four  measures.

4.3. No coupling

Given  the  biases that  can affect  estimates  of  true  cross-
frequency  coupling,  it  is  also  important  to  determine  whether  these
biases can produce  false  positives,  i.e., estimates  of  coupling  when
in  fact  there  is none.  We  thus  repeated  the  above  two  simulations
except  that  gamma  was  now  not  modulated  by  theta  (i.e.  a in  aei2� ft

was  set  to  1).  In  brief,  PAC and  PLV (in  contrast  to  dPAC and  MI)
showed  increasing  spurious  coupling  for  increasing  phase  cluster-
ing  bias. In  addition,  noise  produced  spurious  coupling  in  all  four
measures,  although  this  was  clearly  reduced  for  dPAC compared
to  PAC. Permutation  testing  produced  non-signi“cant  z-values  in
all  four  measures  for  all  bias  and  noise  levels,  thus  resulting  in
correct  statistical  inferences  of  no  coupling.  These results  are not
shown  here,  but  the  code  to  produce  them  are included  in  the  online
Matlab  code.

4.4. Summary  and conclusions from  simulations

The above  simulations  showed  that  dPAC offers  a simple  but
powerful  solution  to  the  bias  of  phase  clustering  that  affects  CFC
estimations  through  PAC. The overestimations  (when  the  angle  of
the  phase  bias  is in-phase  with  the  angle  of  coupling)  and  underes-
timations  (when  the  clustering-coupling  angle  is anti-phase)  were
removed  by  dPAC, and  it  correctly  identi“ed  coupling  through  per-
mutation  testing.  PAC, in  contrast,  showed  in  some  circumstances
Type-II  errors  of  falsely  concluding  the  absence of  coupling,  and  it
also  produced  negative  values,  which  are dif“cult  to  interpret  (less
coupling  than  expected  by  chance).  Although  MI  and  PLV showed
the  same statistical  results  as dPAC, except  for  reduced  sensitivity
in  the  presence  of  noise,  their  raw  values  did  show  ”uctuations  as a
function  of  phase  bias. The presence  of  noise  had  the  least  impact  on
dPAC. Lastly,  when  there  was  no  actual  coupling,  all  four  measures
showed  the  correct  statistical  decision  of  non-signi“cant  coupling,
although  raw  PAC and  raw  PLV were  affected  by  the  bias  to  some
extent.

In  general,  we  conclude  from  these  simulations  that  dPAC pro-
vides  a cleaner  alternative  to  the  regular  PAC method.  MI  and  PLV
provide  similarly  good  approaches  to  ameliorate  phase  clustering
bias  although  this  requires  the  use of  permutation  testing  to  remove
the  bias, which  may  result  in  reduced  sensitivity  to  detect  CFC. In
the  next  section  we  test  the  four  methods  on  electrophysiological
recordings  of  monkey  sleep  data,  and  hippocampal  LFP traces  of  a
freely  moving  rat.

5. Testing  debiased  PAC in  empirical  electrophysiological
recordings

5.1. Monkey  ECoG sleep data
To assess the  performance  of  PAC and  dPAC in  real  electrophys-
iological  data,  and  to  compare  them  with  MI  and  PLV, we  used
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Fig.  7. Noise  by  coupling  angle  simulation  results.  (A)  Percent  signal  change  of  CFC with  a “xed  amount  of  bias  plus  noise,  relative  to  CFC in  case of  no  noise  and  uniform
theta  phase  angles  (i.e., no  bias),  as a function  of  varying  levels  of  noise  (y-axis,  maximum  noise  at  top),  and  varying  angles  of  maximal  coupling  (x-axis).  Red colors  denote
overestimation  and  blue  colors  underestimation  with  respect  to  true  coupling;  solid  black  lines  demarcate  2 standard  deviations.  (B)  Permutation  testing  results.  Green  color
denotes  positive  coupling,  purple  color  denotes  negative  coupling;  statistical  threshold  at  p = 0.001  is shown  with  black  outline;  p = 0.05  with  red  outline.  As in  Fig. 6, these
thresholds  were  uncorrected  for  multiple  comparisons,  and  serve  as a qualitative  marker  of  signi“cance.  (For  interpretation  of  the  references  to  color  in  this  “gure  legend,
t
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 freely  available  (neurotycho.org/sleep-task)  continuous  electo-
orticographical  (ECoG) recording  of  a sleeping  monkey  (Macaca
uscata). Sleep data  were  chosen  because oscillatory  interactions
etween  frequency  bands  are particularly  robust  during  non-rapid
ye movement  (NREM)  sleep  (Cox et  al., 2014;  Steriade  et  al.,
993;  Mölle  et  al., 2002 ). Additionally,  slow  (<1  Hz)  oscillations  dur-

ng  sleep  are known  to  be non-sinusoidal  (Nir  et  al., 2011 ), thus
ffering  a physiological  test  case with  phase  distributions  that  are
xpected  to  be non-uniform  for  at  least  some  frequencies.  Details  of
urgery  and  the  recording  protocol  have  been  described  elsewhere
Nagasaka et  al., 2011 ). Brie”y,  subdural  ECoG data  of  one  monkey
ere  recorded  at  1 kHz  from  128  chronically  implanted  electrodes
overing  most  of  the  lateral  and  medial  aspects  of  the  left  cerebral
emisphere,  while  the  monkey  was  asleep. A reference  electrode
as  placed  in  the  subdural  space between  the  ECoG array  and  the
ura  mater,  and  a ground  electrode  was  positioned  between  the
ura  and  skull.  The sleep  state  was  de“ned  based on  the  degree  of
patial  synchronization  in  the  1…4 Hz  delta  band  (Yanagawa  et  al.,
013 ).

We  extracted  ten  minutes  of  continuous,  artifact-free  sleep  data.
ata  were  down-sampled  to  200  Hz  and  notch-“ltered  around
0  Hz. Visual  inspection  of  the  signals  and  their  power  spectra  indi-
ated  the  presence  of  slow  oscillatory,  delta  and,  for  some  channels,
leep  spindle  activity,  con“rming  the  monkey  was  in  a state  of
REM sleep.  Based on  this  inspection,  we  selected  one  channel

#72)  for  further  processing.  To increase  SNR and  to  account  for
ossible  outliers  or  other  non-stationarities  of  continuous  data,  we
ivided  the  data  into  139  12-s  epochs.  The “rst  and  the  last  4 s

f  each epoch  served  as buffer  zones  to  account  for  edge artifacts
f  the  “ltering  procedure.  On these  epochs  we  performed  wavelet
onvolution  to  obtain  momentary  estimates  of  phase  and  power.
peci“cally,  we  constructed  a family  of  complex  Morlet  wavelets,
ei2�ft eŠt 2 / (2� 2) , where  i  is  the  complex  operator,  t  is  time,  f is  fre-
quency  ranging  from  0.5 to  100  Hz  in  40  logarithmically  spaced
steps;  �  de“nes  the  width  of  each wavelet,  according  to  c/2 � f,
where  c is  the  number  of  wavelet  cycles  ranging  between  3 to
12  in  40  logarithmically  spaced steps.  Power  was  de“ned  as the
squared  complex  magnitude  of  the  convolution  result,  while  phase
was  de“ned  as the  angle  of  the  convolution  result,  bound  between
Š�  and  � . To visually  illustrate  the  presence  of  phase…amplitude
cross-frequency  coupling,  we  time-locked  the  broadband  data  to
0�  of  the  1 Hz  convolution  result,  and  redid  wavelet  convolution.
Trial-average  power  was  then  decibel  normalized  with  respect  to
a whole-trial  time-averaged  baseline.

5.1.2. Coupling  estimation  and statistical  analysis
Phase…amplitude  coupling  was  estimated  using  Eq. (1)  for  PAC,

(9)  and  (10)  for  dPAC, (2)  and  (3)  for  MI  (using  an N of  18  bins,  as
recommended  by  Tort  et  al., 2010 ), and  (4)  for  PLV. CFC was  com-
puted  between  modulating  frequencies  ranging  from  0.5 to  30  Hz,
and  modulated  frequencies  from  1 to  100  Hz. Furthermore,  for
every  frequency…frequency  pair,  phase  was  shuf”ed  with  respect
to  power  by  randomizing  the  trials  only  for  phase. This  was  done
1000  times  to  create  a distribution  of  surrogate  coupling  values
under  the  null-hypothesis  of  no  cross-frequency  coupling.  This
null-distribution  was  used  to  z-transform  each coupling  measure
(equal  to  statistical  procedures  for  the  simulations;  e.g. Eq. (11) ),
in  order  to  visualize  coupling  strength  across frequencies  and  to
compare  coupling  across measures.
5.1.3. Results
First,  as can be seen in  Fig. 8a, the  monkey  sleep  data  exhib-

ited  coupling  of  power  of  multiple  frequency  bands  to  the  phase
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